福建浦城—宁德铜钼多金属成矿带成矿系统及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以成矿系统理论为指导,应用区域成矿研究法,对浦城—宁德北西向成矿带内的控矿构造基本格局及对矿床的控制作用,矿床主要类型及其各类型矿床的产出地质背景、控制因素及形成机制,以矿床分布规律与找矿方向等进行了较深入的研究与分析,取得主要成果如下:
     1、该成矿带内控矿构造型式多样,控矿作用层次清晰。深部构造,在幔凹或幔凸的边缘、莫霍面等深线密集(梯度较陡)或局部突出地段、扭曲端等控制区域成矿带的展布;大断裂带及其复合部位控制矿集区和大型矿床的产出;大断裂断陷(隆)构造,即隆中坳,或总体坳陷(断陷)背景下的局部隆起,即坳中隆,或总体坳陷的背景下的局部更为强烈的坳陷,即坳中坳,所有这些特殊的构造部位,往往也是成矿元素的富集区和成矿远景区。不同级别的火山与侵入构造分别控制矿田、矿床和矿体的产出。
     2、带内矿床主要可归入①与晚元古代海底火山—沉积变质改造型(中生代)铜、铅锌、铁、金矿和②与中生代火山—侵入热液活动有关的钼、铜、铅锌、金银矿两大成矿系统。其中前者的块状硫化物型铅锌、铁、铜矿床和后者中的斑岩型铜钼矿为区内找矿的主攻类型。Cu、Mo、Pb、Zn、Au为区内优势矿种。
     3、对赤路钼矿床的Re—Os同位素年代学研究得出如下结论:(1)赤路钼矿的矿化模式年龄为105.6Ma,与似斑状花岗岩、二长花岗岩等的87Sr/86Sr等时线年龄115±4Ma较接近,表明二者在成因上密切相关,同属燕山晚期岩浆演化的产物;(2)赤路钼矿床具有辉钼矿中Re、Os含量偏低,低87Sr/86Sr初始值和硫同位素组成接近陨石硫等特点,表明其为成矿物质来源于地壳深部,且为斑岩型钼矿床。该认识将为浦城—宁德北西向成矿带乃至於全省燕山晚期岩浆活动及成矿提供了可靠的年代学证据和指导。
     4、对政和夏山铅锌矿床的研究,结合研究省内主要矿化集中区马面山群对金银铜铅锌多金属矿的控矿特点,得出如下结论:(1)新元古代马面山群是带内重要的块状硫化物型铅锌、铁、铜矿的赋矿层位,尽管后期受到构造、热液的叠加改造,其层控特点仍相当清晰,成矿主要发生在新元古代;(2)从目前的研究结果而言,铜、铅锌、铁矿的成矿作用主要受绿片岩及大理岩等钙硅质岩控制;(3)带内马面山群出露区及其周边,具备寻找大型海底火山(沉积)变质改造型(块状硫化物型)矿床的潜力。
     5、根据上述认识,结合矿床、矿(化)点、物化探及重砂异常等发育情况,共筛选出成矿远景区5个、预查找矿区6个及普查找矿区7个,为进一步找矿突破提供依据。经初步钻孔验证已有所发现。
With the theory of metallogenic system as a guide and the application of regional metallogenic study method, this research are thoroughly carried out in the aspects of the tectonnic setting of the NW-strenching Pucheng-Ningde metallogenic belt, its ore controls, main types of ore deposits and the gennesis of each type, as well as the metallogenic regularities and prospecting direction. Through the work of the past three years, the main accomplishments obtained are as follows:
     1. multipe scale and multiplicity of ore controlling structure. Deep structure in the mantle concave or convex edge of mantle, Moho-discontinuity isobath (steep gradient) or local turning control the regional metallogenic belt in distribution; major fault zones and their recombination region control the metallogenic zone; great fault depression, that is, overall depression in the context of uplift, that is, or local uplift in the background of overall fault depression, or the local stronger depression in the background of overall fault depression, all of these special structures are often the enriched areas of ore-forming elements and potential prospects. Different levels of volcanic and intrusive structure control the orefields, ore deposits and orebodies, respectively.
     2. The main ore deposits within the belt can be divided into two metallogenic syetems :①.Neoproterozoic submarine volcano-sedimentary metamorphic transformation m.s.( of copper, lead and zinc, iron, gold deposits) and②. molybdenum, copper, lead-zinc, gold and silver deposits related to Mesozoic volcanic-intrusive hydrothermal m.s. The massive sulphide, lead-zinc, iron, copper deposits of the former and the porphyry copper-molybdenum deposits of the latter are the main ore types in the region.
     3. The conclusions drawn through the research on the Re-Os isotopic geochronology of the Chilu Mo deposit are as follows: (1) the model age of the Chilu Mo ore deposit is 105.6Ma, closely to the 87Sr/86S isochrone age of the porphyric granite, adamellite. So they are closely correlated in the genesis, and both are the production of magmatic evolution of the late Yanshan. (2) In the Chilu Mo deposit, the Re and Os content and the initial value of 87Sr/86S are on the low side, and the sulfur isotope is close to that of meteorite, indicating that the ore-forming substance comes from deep crust and the type is porphyry Mo deposit.
     4. The research on Xiashan leac-zinc deposit in Zhenghe, combining the ore-controlling characteristics of Mamianshan group in the ore concentration area of the belt. The results are as follows: (1) Neoproterozoic Mamianshan group is important ore-bearing horizon of massive sulphide lead-zinc, and copper deposit. Although undergoing the superimposed reconstruction of the structure and fluid, its stratabound characteristics still show clear. The mineralization occurred in Neoproterozoic. (2)From the current research results, the copper, lead-zinc, iron deposits are mainly controlled by greenschist and marble and other kinds of calcareous and siliceous rock. (3) the outcrop area of the Mamiansha group and its circumference in the belt has the potential of prospecting large-sized submarine volcano-sedimentary metamorphic transformation deposit.
     5. According to ore-forming geological setting, ore-controlling factors and the ore prospecting indicators on the main types of the ore deposits, combining the geological, geophysical and geochemical data and the heavy mineral anomalies, five metallogenic prospecting areas, six preliminary exploration areas and seven reconnaissance areas are sifted for the further ore-prospecting.
引文
[1]石礼炎,高天钧等.福建省大型隐伏铜矿床预测.福州:福建省地图出版社,1998
    [2]王文斌,周汉民等.中国东南沿海金、银矿床区域成矿规律.中国地质科学院南京地质矿产研究所所刊,1998,19(4):95~104
    [3]冯志文,夏卫华等.闽北建瓯—政和火山岩型金矿地质,中国地质大学出版社,1991
    [4] Barley, M.E.. A review of Volcanic-hosted massive sulfide and sulfate mineralization in western Australia. Economic Geology. 1992. 87:855-872.
    [5]Eastoe C. J., Gustin M M. Volcanogenic massive sulfide deposits and anoxia in the Phanerozoic oceans. Ore Geology Reviews, 1996, 10(3-6): 179-197.
    [6]张开毕,李学燮,李兼海.闽西北中新元古代马面山岩群的划分与对比.福建地质. 2002, 21(3) :176-185.
    [7]姚金炎,耿文辉.次火山岩型和斑岩型矿床地质对比.矿产与地质,1999,13(5):264~267
    [8]吴淦国、张达、陈柏林、中国东南大陆中生代构造域的转换及其与成矿的关系-以闽西南地区为例, Earth Sciences, 2000, Vol.25, No.4. P390-396.
    [9]翟裕生,邓军,崔彬等.成矿系统及综合地质异常.现代地质,1999,13(1):99~104
    [10]高天均等,台湾海峡及其周边地区构造岩浆演化与成矿作用,北京:地质出版社,1999
    [11]王振民.华夏古陆及其相关地质问题的新认识.福建地质论文集,福州:福建地图出版社,1996
    [12]黄泉祯等.中华人民共和国福建省地质图(1:500000)说明书.福建省地图出版社,1998
    [13]包超民,邢光福,周宇章. 2005.华东地区前寒武纪主要地质事件及构造演化.资源调查与环境, 26(2): 79~85.
    [14]鲍学昭,甘晓春. 1996.闽北麻源群斜长角闪岩中锆石的成因矿物学研究.岩石矿物学杂志, 15(1): 73~79, 80.
    [15]张维权.闽西北变质火山岩的地球化学性质.福建地质, 1986, 5(2):36~50
    [16]王鹤年,孙承辕.闽中地区绿片岩的微量元素地球化学及其形成的构造背景.高校地质学报, 1998,04
    [17]张达,吴淦国,彭润民等.闽中地区马面山群东岩组变质岩形成的古构造环境研究.地学前缘, 2005,12(1):310~320
    [18]周永丰.福建省区域构造格架及建阳推覆构造系统.福建省地学论文集,1996,福建省地图出版社.97~107
    [19]蔡本俊,陈柏林,陈洪新, 1994.崇安-石城构造带金矿成矿规律.北京:地震出版社, 1~105.
    [20]谢家莹等.福建浦城--三都澳火山喷发带早白垩世火山地层划分对比.福建地质,1994,13(1): 26~36
    [21]边效曾等.福建古生代—中生代构造演化和格架.福建地质,1993,12(4):280~291
    [22]王培宗等.福建省地壳—上地幔结构及深部构造背景的研究.福建地质,1993,1(2)19~25
    [23]陈跃安,王培宗.福建省区域地球物理、地球化学的基本特征及内生金属成矿特点.福建地质, 1982(2):69~80
    [24]蔡以评等.福建省表壳元素丰度.福建地质,1997,16(3) .5~10
    [25]姜耀辉等.福建浦城--三都澳成矿带几个成矿作用问题的探讨.福建地质,1994,13(3):174-187
    [26]周兵,顾连兴.论梅仙块状硫化物矿床的特征及成矿地质环境.矿床地质,1999, 18(2):99-109.
    [27]周兵,顾连兴,李玉荷.福建两个块状硫化物矿床中磁黄铁矿结构的研究.岩石矿物学杂志, 1998, 17(1):68-73.
    [28]蔡仕明. 1990.福建建阳水吉Ⅵ号矿带铅锌银矿床地质特征.福建地质, 9(4): 256-265.(4): 301~312
    [29]叶水泉,倪大平,吴志强.福建省梅仙式块状硫化物矿床.火山地质与矿产, 1999,成20(3):172-180.
    [30]叶水泉,唐瑞来,张一梅.论福建省闽中裂谷带成矿系统.有色金属矿产与勘查, 1999, 8(6):400-403. [ 31 ]Cas R. A. F. Submarine volcanism: eruption styles, products, and relevance to understanding the host rock successions to volcanic hosted massive sulfide deposits. Economic Geology, 1992, 87:511-541.
    [32]Gustin Michael M., Eastoe Christopher J. Geology and ore petrography of Permian kuroko-type volcanogenic massive sulfide deposits of the Bully Hill area, East Shasta District, California. Economic Geology and the Bulletin of the Society of Economic Geologists. 2000, 95(2): 343-360.
    [33]Franklin J.M.. Volcanic-associated massive sulphide base metals. In Geology of Canadian mineral deposit types, Geological Survey of Canada, Geology of Canada, 1996, 8:158-183.
    [34]张克尧,王建平,杜安道等.福建福安赤路钼矿床辉钼矿Re~Os同位素年龄及其地质意义.中国地质,2009,36(1):147~155
    [35]孟祥金,侯增谦,董光裕,刘建光,屈文俊,杨竹森,左力艳,万禄进,肖茂章.江西金溪熊家山钼矿床特征及其Re-Os年龄.地质学报, 2007,81(7):946-951
    [36]姚军明,华仁民,屈文俊,戚华文,林锦富,杜安道.湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义,中国科学, 2007,4(471-477)
    [37]李进文,李旭辉,裴荣富,梅燕雄,王永磊,屈文俊,黄修保,臧文栓.江西武山铜矿南矿带辉钼矿Re-Os同位素年龄及其地质意义,地质学报,2007,81(6):801-807
    [38]Barrie, C.T. and Hannington, M.D.(eds). Volcanic-associated massive sulphide deposits: Processes and examples in modern and ancient settings; Geological Association of Canada-Society of Econimic Geologists Short Course, Ottawa, Canada, 1997, 418
    [39]Lydon J. W.. Ore deposit model 14, Volcanogenic massive sulfide deposits partⅠ: Adescriptive model. Geoscience Canada., 1984,11: 195-202.
    [40]王义强等.韧性剪切带向剪破裂的转化与成岩成矿作用.地质力学学报,1997,3(1):38~43
    [41]陈伯林等.韧性剪切带型金矿成矿模式.地质论评,1999,45(2):186~192
    [42]王鹤年等.华夏地块韧性剪切带性金矿地质.北京:地质出版社,1992
    [43]丽娅,王鹤年,孙承辕.闽中马面山群变质火山岩微量元素地球化学特征及其构造意义.高校地质学报. 2001: 7(2)164-174
    [44]陶奎元,高天钧等.东南沿海火山岩基底构造及火山-侵入作用与成矿关系,1998,地质出版社
    [45]石礼炎等.福建省主要矿产的成矿特征与分布规律.福建地质,1991,10(2):85~102
    [46]翟裕生,邓军,宋鸿林,程小久,彭润民.同生断层对层控超大型矿床的控制.中国科学(D辑), 1998, 28(3):214-218.
    [47]常印佛,刘湘培,吴言昌. 1991.长江中下游铜铁成矿带.北京:地质出版社, 1~379.
    [48]陈培荣,华仁民,章邦桐,陆建军,范春方. 2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学(D辑), 32(4):279-289.
    [49]戴建斌,龚贵伦, 2004.福建黄地金–多金属矿床地质特征.黄金地质, 10(4):37~40.
    [50]戴自希.全球超巨型矿床(区).走向21世纪的地学与矿产资源, 1996, 35-42.
    [51]傅树超,徐维光, 1995.武夷山东部地区早元古代麻源群形变特征.福建地质, 14(1):1~7.
    [52]甘晓春,李惠民,孙大中,等, 1993.闽北前寒武纪基底的地质年代学研究.福建地质, 12(1): 17~31.
    [53]符鹤琴.裂谷的分类及有关问题.江西地质, 1988, 2(1):56-63.
    [54]高天钧, 1999.福建紫金山铜金矿床类型与环太平洋浅成低温矿床的比较.福建地质, 18(4):167~177.
    [55]葛朝华,韩发.广东大宝山矿床喷发-沉积成因地质地球化学特征.北京:北京科学技术出版社, 1987.
    [56]宫同伦.裂谷的形成机制、演化特征及成矿作用.西安地质学院学报, 1986, 8(2):97-106.
    [57]郭令智,施央申,卢华复等. 1990.武夷-云开震旦纪-早古生代沟、弧、盆褶皱系.造山带·盆地环太平洋构造论文集,地质出版社.
    [58]郭令智,施央申,马瑞士, 1983.西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化.地质学报, 57(1):11~21.
    [59]韩林,大陆裂谷的拉张、滑脱和沉积作用(尤其关于东非裂谷).海洋地质译丛, 1990, 5: 21-29.
    [60]胡文,顾连兴,徐克勤,胡受奚.论华南块状硫化物矿床成矿规律与找矿方向.地质论评, 1994, 40(6):513-519.
    [61]华仁民,毛景文, 1999.试论中国东部中生代成矿大爆发.矿床地质, 18(4):300~307
    [62]黄春鹏,张家元,詹玉亭, 1991.福建尤溪梅仙龙北溪组变质火山岩的Sm-Nd同位素年龄研究.福建地质, 10(2):150~157.
    [63]蒋少涌,加拿大Sullivan超大型Pb, Zn, Ag矿床中几个指示成矿环境的特征矿物研究.高校地质学报, 2000, 6(2):173-177.
    [64]Lydon John W.. Sedex deposits and global evolution. Abstracts with Programs, Geological Society of America. 1997,29(6): 17-18.
    [65]Sillitoe Richard H., Hannington Mark D., Thompson John F H. High sulfidation deposits in the volcanogenic massive sulfide environment. Economic Geology and the Bulletin of the Society of Economic Geologists, 1996,91(1): 204-212.
    [66]Syme E. C., Lucas Stephen B., Bailes Alan H, Stern R A. Contrasting arc and MORB-like assemblages in the Paleoproterozoic Flin Flon Belt, Manitoba, and the role of intra-arc extension in localizing volcanic-hosted massive sulphide deposits. Canadian Journal of Earth Sciences, 1999, 36(11): 1767-1788.
    [67]Vearncombe S., Kerrich R.. Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with early Archaean volcanogenic massive sulphide mineralization, Pilbara Craton. Precambrian Research, 1999, 98(3-4): 243-270.
    [68]Vearncombe Susan, Vearncombe Julian R., Barley Mark E. Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia. Precambrian Research, 1998, 88(1-4): 67-82.
    [69]Xu Xisheng, Dong Chuanwan, Li Wuxian, Zhou Xinmin. 1999. Late Mesozoic intrusive complexes in the coastal area of Fujian, SE China;the significance of the gabbro-diorite-granite association. Lithos, 46(2): 299-315.
    [70]Ashley P M, Willott B R. 1997. Zinc-lead skarn deposits at Leadville, New South Wales, Australia, and their distinction from volcanic-hosted massive sulphides. Mineralium Deposita. 32(1):16-33.
    [71]Bailes Alan H., Galley Alan G.. 1999. Evolution of the Paleoproterozoic Snow Lake arc assemblage and geodynamic setting for associated volcanic-hosted massive sulphide deposits, Flin Flon Belt, Manitoba, Canada. Canadian Journal of Earth Sciences. 36(11):1789-1805.
    [72]Barley, M.E., Groves, D.I.. 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology. 20:291-294.
    [73]Chen A., 1999. Mirror–image thrusting in the South China Orogenic Belt: tectonic evidence from western Fujian, southeastern China. Tectonophysics, 305: 497–519.
    [74]Chen Jiangfeng, Jahn Bor-ming. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284(1-2): 101-133.
    [75]Condie, K C. 1989. Plate tectonics & crustal evolution. New York: Pergamon Press, 3rd ed.
    [76]King P L. White A J R. Chappell B W. Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. [Serial] Journal of Petrology. 38(3): 371-391.
    [77]Lallemand S, Font Y, Bijwaard H, et al, 2001. New insights on 3-D Plates interaction near Taiwan fromtom ography and tectonic implications. Tectonophysics, 355: 229~253.
    [78]Li Xianhua, 2000. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18: 293~305
    [79]Yu Xinqi, Wu Ganguo, Zhang Da, et al, 2006b. Progress in researching into the Mesozoic tectonic regime transformation in Southeast China. Progress in Natural Science, 16(6): (in press)
    [80]Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287.
    [81]Sun S, Mcdonough, W F. 1989. Chemical and isotopic systematcs of oceanic basalts: implications for mantle conposition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the ocean basins. Boston: Blackwell Scientific, 313-345.
    [82]Ramsay L.G., 1967. Folding and fracturing of rocks. New York: Megraw-Hill, 1~568.
    [83]Ray G E and Dawson K M. 1998. Mineralized skarns in the Canadian cordillera. In Lentz D R, eds: Mineralized Intrusion-Related Skarn Systems. Min. Assoc. Can. Short Course 26, 147-167.475-518.
    [84]Roberts M P, Clemens J D. 1993. Origin of high-potassium calc-alkaline, I-type granitoids. Geology, 1993, 21(9): 825-828.
    [85]Rona P., Scott S. D.. Preface for a special issue on sea-floor hydrothermal mineralization, New per-spectives. Econ. Geol., 1993, 88(8): 1935-1976.
    [86]Sawkins F. J.. Massive sulphide deposits in relation to geotectonics. Special Paper, Geological Association of Canada, 1976, 14: 221-240.