三维四向碳/环氧编织复合材料积累损伤及失效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织复合材料是为了满足在航空航天领域中结构部件具有高比刚度、高比强度并且能够抵抗多向应力以及热应力的需求下设计和研制的复合材料。随着编织工艺和成型工艺的发展,三维编织复合材料在大尺寸自动化编织和整体成型方面有着独特的优势。并且三维编织复合材料具有良好的抗冲击性能、高的损伤容限以及材料结构可设计性等特点,使三维编织复合材料成为较有潜力的第三代纤维增强复合材料。三维编织复合材料结构部件能够广泛应用的关键是对其结构热力学性能(强度、损伤容限和可靠性)进行正确的分析及评价,但三维编织复合材料的力学性能依赖于复杂的细观结构以及细观材料等诸多影响因素,从而本文结合宏微观实验,从细观角度出发,根据三维编织复合材料细观结构周期性特点构造具有代表性的细观几何结构(代表体积单胞),利用细观损伤模型,对三维编织复合材料的宏观有效性能、损伤和失效进行了分析。
     本文详细综述和分析了国内外三维编织复合材料的研究现状,就编织复合材料的几何结构、力学模型和实验等方面进行展开,同时描述了当前表征复合材料非线性力学性能的不同的损伤模型,给出了研究三维编织复合材料力学性能的基本思路:从三维编织复合材料宏细微观不同层次进行分析,作为一个多尺度问题进行处理。针对三维四向编织复合材料的细观编织结构特点(内部编织结构和表面编织结构不同),为了尽量减少三维四向编织复合材料表面编织结构的影响,采用不同厚度和直径的三维编织试件对三维四向编织复合材料进行拉伸和压缩试验研究,并且通过拉伸和压缩试件的宏细观破坏截面观察,确定三维四向编织复合材料的宏细观破坏模式,为细观损伤模型的建立提供指导。
     由于三维四向编织复合材料内部纤维束相互挤压,使纤维束的表面纤维出现弯曲和扭曲现象。本文把代表体积单胞内部每根纤维束的表面分成六个区域,利用随机函数理论对扭曲纤维束表面的不同区域进行有效性能预报,结合有限元方法,施加周期边界条件,考虑扭曲纤维束对三维四向编织复合材料宏观力学性能的影响。同时利用体积平均化方法,建立考虑纤维束弯曲的代表体积单胞模型,对内部纤维束弯曲的三维四向编织复合材料的宏观力学性能进行研究。
     为了研究三维四向编织复合材料积累损伤破坏的过程,建立了与局部的应变、单元的特征长度和材料的断裂能释放率相关的损伤演化模型,利用Murakami-Ohno损伤模型实现细观组分材料刚度的折减,从而对在不同载荷作用下的不同编织角(30°和45°)的编织复合材料进行积累损伤分析。在细观损伤模型中考虑了细观组分材料不同的细观破坏模式:纤维束纵向拉伸剪切和压缩剪切、横向拉伸剪切和压缩剪切以及基体拉压损伤。在单轴纵向拉伸载荷作用下,利用界面单元又考虑了三维四向编织复合材料内部纤维束/纤维束和纤维束/基体界面损伤模式,并且讨论了不同界面强度对该编织材料单轴拉伸性能的影响。为了提高数值模拟的收敛速度,对损伤模型中的损伤变量进行粘性规则化,并且讨论了粘性系数对数值结果的影响。在单轴纵向压缩载荷作用下,引入了基体理想塑性模型,分析了编织复合材料内部扭曲纤维束表面纤维初始未对齐角和纤维束纵向剪切非线性对该编织复合材料单轴纵向压缩性能的影响。在纵向单轴拉伸和压缩模拟过程中,对编织复合材料不同组分材料的积累损伤过程进行分析,探讨了细观组分材料不同的损伤机理,通过与宏观实验进行对比,验证了数值模拟的可靠性。
     通过对三维四向编织复合材料代表体积单胞施加复杂载荷条件,对编织复合材料在复杂载荷条件下的强度进行预报,得到了编织复合材料的破坏包络线,并且构造了三维编织复合材料宏观破坏准则,为编织复合材料结构部件的强度校核和结构优化设计提供强度判据。该研究路线同样适合于其他形式的编织复合材料,为三维编织复合材料在工程中广泛应用提供理论依据。
In order to meet the requirement of the structural components in aeronautic andastronautic fields, three dimensional (3D) braided composites have been designed anddeveloped, which can resist the multi-directional stress and thermal stress and have highstiffness and strength at low density. With the development of braid processes and mold-ing techniques, it has predominant advantage to form the 3D braided composites withlarge sizes in an automatic braid process and an integral braid manner. In addition, comb-ing the excellent resistance impact, high damage tolerance and material structure redesigncharacteristics, 3D braided composites have been become the third generation fiber re-inforced composites. It is the key to study the thermal mechanical properties, such asstrength, damage tolerance and reliability analysis, for 3D braided composites which canbe widely used in structural components. However, the mechanical properties of the 3Dbraided composites are determined the complicated mesoscopic structures and materialbehavior of constituents. In this dissertation, the macroscopic and microscopic experi-ments for the 3D braided composites are conducted. Based on the periodic braid structureof the 3D braided composites, the representative volume cell (RVC) is established. Themacroscopic mechanical properties, damage and strength of the braided composites areanalyzed by using mesoscopic damage theory.
     The domestic and foreign researching development of the 3D braided composites,including the geometrical structure, mechanical models, experimental studies and dam-age models for investigating the nonlinear properties of composites have been discussedand analyzed. The general routine to evaluate the mechanical properties of 3D four-stepbraided composites has been provided. 3D braided composites which can be divided intothree levels: macroscopic, mesocopic and microscopic, which can be regarded as multi-scale problems.
     Based on the micro-braid structural characteristics of the 3D four-step braided com-posites (internal and surface of the braided composites with different braid structures),the different thickness and diameter of the specimens are chosen to conduct the tensileand compressive tests in order to minimize the effect of surface braid structure on themechanical properties of the braided composites. The macro and micro failure modes of the braided composites can be obtained by observing the fractographs of the failurecross-section, which is the experimental basis to establish damage model.
     Owing to the squeezing of braid yarn each other within the 3D four-step braidedcomposites, the surface of these braid yarns exhibits the undulation and twisted phe-nomenon. In the present dissertation, the surface of each braid yarn within an RVC isdivided into six regions. The effective properties of each region are obtained by stochas-tic function theory. The RVC is applied the periodic boundary conditions by using finiteelement method to calculate the effect of the surface twisted fiber of braid yarn on themechanical properties of the braided composites. Meanwhile, the fiber undulation withinRVC is considered. The effect of fiber undulation on the macroscopic mechanical prop-erties has been studied by using volume homogenization method.
     In order to investigate the progressive damage and failure process, the damage modelof composites has been established, in which some mescoscopic damage modes, such aslongitudinal and transverse tensile-shear, compressive-shear modes of braid yarn and ten-sile, compressive modes of matrix, are considered. The damage evolution model has beenbuilt, which are depended on the fracture energy of the constituents, characteristic lengthof element and local strain. The Murakami-Ohno damage model has been used to com-plete the stiffness reduction of the constituents of the braided composites. Therefore, theprogressive damage analysis for the braided composites under different loading are con-ducted. In order to improve the numerical convergence, an artificial Duvaut-Lions viscousmodel is used in the damage model. In this dissertation, when the braided composites aresubjected to the uniaxial tensile loading, the interface damage between yarn/yarn andyarn/matrix are considered in the damage model further. The effect of interfacial strengthand viscous parameters on the macroscopic stress-strain curves of the braided compositesis discussed. When the braided composites are under only uniaxial compressive loading,the damage of matrix is neglected but regarded as perfect plastic material. The effect offiber misalignment angle of surface fiber of braid yarn on the mechanical properties of thebraided composites is considered. In addition, the longitudinal shear nonlinear of braidyarn in the numerical model is included. The effect of braid angle (30°and 45°) on themacroscopic stress-strain curves and damage development of the constituents is analyzedfor the braided composites under the longitudinal tensile and compressive loading. Thedamage mechanisms of the constituents are also discussed. Compared with experimental results, the reliability of the numerical results is verified.
     By applying complicated boundary conditions on the RVC of the braided compos-ites, the strength of the braided composites under different boundary conditions has beenobtained. The macroscopic failure criterion of the braided composites is constructed,which can provide a theoretical criterion to check the strength of structural componentsmade by the braided composites and can be used to the structural optimization design.The researching method can also fit for other multi-directional braided composites, andprovide a theoretical basis for the braided composites widely used in engineering appli-cation.
引文
1陈绍杰.先进复合材料的近期发展趋势[J].材料工程, 2004, 9:9~13.
    2 P. Potluri, A. Manan, R. Young, et al. Experimental Validation of Micro-strainsPredicted by Meso-scale Models for Textile Composites[J]. AIAA Journal, 2007,6(5):5481~5488.
    3 C.C. Peo Jr., H. Dexter, I. Raju. Review of the NASA Textile Composites Re-search[J]. Journal of Aircraft,, 1999, 36:876~884.
    4杨桂,敖大新,张志勇,等.编织结构复合材料制作,工艺及工业实践[M].北京:科学出版社,1999.
    5陶肖明,冼杏娟,高冠勋.纺织结构复合材料[M].北京:科学出版社, 2001.
    6 A. Miravete. 3-D Textile Reinforcements in Composite Materials[M]. UK: Wood-head Publishing Ltd, 1999.
    7 A. Mouritza, M. Bannister, P. Falzon, et al. Review of Applications for Ad-vanced Three-dimensional Fibre Textile Composites[J]. Composites: Part A, 1999,30:1445~1461.
    8 C. Zweben, B. Rosen. Statistical Theory of Material Strength with Application toComposite Materials[J]. Journal of the Mechanics and Physics of Solids, 1970,18(3):189~206.
    9 E. Iarve, R. Kim, D. Mollenhauer. Three-dimensional Stress Analysis and WeibullStatistics Based Strength Prediction in Open Hole Composites[J]. Composites: PartA, 2007, 38:174~185.
    10 F. Scardino. Introduction to Textile Structures[M]. CA: Elsevier, 1989.
    11 F. Ko. Preform Fiber Architecture for Ceramic-matrix Composites[J]. CeramicBull, 1989, 68(2):401~414.
    12 J. Byun, T. Chou. Process-Microstructure Relationships of 2-step and 4-stepBraided Composites[J]. Composites Science and Technology, 1996, 56:235~251.
    13 W. Li, M. Hammad, A. El-Shiekn. Structural Analysis of 3-D Braided Preforms forComposites, Part One: The Four-step Preforms[J]. Journal of the Textle Institute,1990, 81(4):491~514.
    14 Y. Wang, A. Wang. On the Topological Yarn Structure in 3-D Rectangular andTubular Braided Perform[J]. Composites Science Technology, 1994, 51:575~86.
    15 Y. Wang, A. Wang. Microstructure-property Relationships in 3-D Braided Com-posites[J]. Composites Science Technology, 1995, 53:213~222.
    16 Y. Wang, A. Wang. Geometric Mapping of Yarn Structures in 3-D Braided Compos-ites Due to Shape Change[J]. Composites Science Technology, 1995, 53:359~370.
    17 D. Wu. Three-cell Model and 5D Braided Structural Composites[J]. CompositesScience and Technology, 1996, 56:225~233.
    18 L. Chen, X. Tao, C. Choy. On the Microstructure of Three-dimensional BraidedPreforms[J]. Composites Science and Technology, 1999, 59:391~404.
    19 S. Mohajerjasbi. Fiber Architecture of Three-dimensional Braided Composites[J].AIAA Journal, 1998, 36(4):613~617.
    20陈利,李嘉禄,李学明.三维编织中纱线的运动规律分析[J].复合材料学报,2002, 19(2):71~74.
    21 L. Chen, X. Tao, C. Choy. Mechanical Analysis of 3-D Braided Composites by theFinite Multiphase Element Method[J]. Composites Science and Technology, 1999,59:2383~2391.
    22 Y. Wang, X. Sun. Digital-element Simulation of Textile Processes[J]. CompositesScience and Technology, 2001, 61:311~319.
    23 G. Zhou, Y. Wang, X. Sun. Multi-chain Digital Element Analysis in Textile Me-chanics[J]. Composites Science and Technology, 2004, 64:239~244.
    24 Y. Miao, E. Zhou, Y. Wang, et al. Mechanics of Textile Composites: Micro-geometry[J]. Composites Science and Technology, 2008, 68:1671~1678.
    25 B. Gu. Prediction of the Uniaxial Tensile Curve of 4-step 3-dimensional BraidedPerform[J]. Composite Structures, 2004, 64:235~241.
    26 W. Sun, F. Lin, X. Hu. Computer-aided Design and Modeling of Composite UnitCells[J]. Composites Science and Technology, 2001, 61:289~299.
    27李嘉禄,刘谦.三维编织复合材料中纤维束横截面形状的研究[J].复合材料学报,2001,18(2):9~13.
    28杨振宇,卢子兴,刘振国,等.三维四向编织复合材料力学性能的有限元分析[J].复合材料学报,2005,22(5):155~161.
    29徐焜,许希武,汪海.三维四向编织复合材料的几何建模及刚度预报[J].复合材料学报,2005,22(1):133~138.
    30 H. Bo¨hm, F. Rammerstorfer, E. Weissenbek. Some Simple Models for Microme-chanical Investigations of Fiber Arrangement Effects in MMCs[J]. ComputationalMaterials Science, 1993, 1(3):177~194.
    31 T. Ishikawa, T. Chou. Stiffness and Strength Behaviour of Woven Fabric Compos-ites[J]. Journal of Material Science, 1982, 17:3211~3220.
    32 C. Ma, J. Yang, T. Chou. Elastic Stiffness of Three-Dimensional Textile StructuralComposite[C]//ASTM STP893,Composite Materials : Testing and Design. Ameri-can Society for Testing Materials. Philadelphia, 1986:402~421.
    33 J. Yang, C. Ma, T. Chou. Fiber Inclination Model of Three Dimensional TextileStructural Composite[J]. Journal of Composite Materials, 1986, 20:472~483.
    34 N. Naik, V. Ganesh. Failur Behavior of Plain Weave Fabric Laminates under On-axis Uniaxial Tensile Loading: II Analytical Predictions[J]. Journal of CompositeMaterials, 1996, 30(16):1779~1822.
    35 V. Ganesh, N. Naik. Failur Behavior of Plain Weave Fabric Laminates under On-axis Uniaxial Tensile Loading:i Laminate Geometry[J]. Journal of Composite Ma-terials, 1996, 30(16):1748~1778.
    36 H. Hahn, R. Pandy. A Micromechanics Model for Thermoelastic Properties of PlainWeave Fabric Composites[J]. Journal of Engineering Materials and Technology,1994, 116:517~523.
    37 R. Naik. Failure Analysis of Woven and Braided Fabric Reinforced Composites[J].Journal of Composite Materials, 1995, 29:2334~2363.
    38梁军,杜善义,韩杰才.一种含特定微裂纹缺陷三维编织复合材料弹性常数预报方法[J].复合材料学报,1997,14(1):101~107.
    39 X. Aubard, C. Cluzel, L.Guitard, et al. Modeling of the Mechanical Behaviour of
    4D Carbon/carbon Composite Material[J]. Composites Science and Technology,1998, 58:701~708.
    40 B. Sankar, R. Marrey. Analytical Method for Micromechanics of Textile Compos-ites[J]. Composites Science and technology, 1997, 57:703~713.
    41 A. Miravete, J. Bielsa, A. Chiminelli, et al. 3D Mesomechanical Analysis of Three-axial Braided Composite Materials[J]. Composites Sciense and Technology, 2006,66:2954~2964.
    42卢子兴,冯志海,寇长河,等.编织复合材料拉伸力学性能的研究[J].复合材料学报,1999,16(3):129~134.
    43卢子兴,胡奇.三维编织复合材料压缩力学性能的实验研究[J].复合材料学报,2003,20(6):67~72.
    44李典森,李嘉禄,陈利,等.三维编织复合材料蠕变行为的试验研究[J].航空材料学报,2006,26(1):76~80.
    45庞宝君,杜善义,韩杰才,等.三维四向编织碳/环氧复合材料实验研究[J].复合材料学报,1999,16(4):136~141.
    46庞宝君,杜善义,严勇,等.三维四向碳/环氧编织复合材料剪切力学性能实验研究[J].实验力学,1999,14(2):209~215.
    47魏丽梅.切边对三维编织复合材料力学性能的影响[D]天津工业大学, 2005.
    48严实,孙雨果,吴林志,等.板状三维四向编织复合材料压缩细观破坏机理的实验研究[J].复合材料学报,2007,22(4):133~139.
    49李兆霞.损伤力学及其应用[M].北京:科学出版社, 2002.
    50 K. L. Reifsnider. Some Fundamental Aspects of the Fatigue and Fracture Responseof Composite Materials[C]//Proceedings of the Fourteenth Annual Meeting. UnitedStates, 1977:373–384.
    51 L. L. Mishnaevsky Jr., S. Schmauder. Continuum Mesomechanical Finite ElementModeling in Materials Development: A State-of-the-art Review[J]. Applied Me-chanics Reviews, 2001, 54(1):49~66.
    52 S. Tan, R. Nuismer. A Theory for Progressive Matrix Cracking in Composite Lam-inates[J]. Journal of Composite Materials, 1989, 23(10):1029~1047.
    53 S. Tan. A Progressive Failure Model for Composite Laminates Containing Open-ings[J]. Journal of Composite Materials, 1991, 25(5):556~577.
    54 S. Tan, J. Perez. Progressive Failure of Laminated Composites with a Hole underCompressive Loading[J]. Journal of Reinforced Plastics and Composites, 1993,12(10):1043~1057.
    55 F. Chang, L. Lessard. Damage Tolerance of Laminated Composites Containing anOpen Hole and Subjected to Compressive Loadings: Part I―analysis[J]. Journalof Composite Materials, 1991, 25:2~43.
    56 Z. Apalak, M. Apalak, M. Genc. Progressive Damage Modeling of an AdhesivelyBonded Unidirectional Composite Single-Lap Joint in Tension at the MesoscaleLevel[J]. Journal of Thermoplastic Composite Materials, 2006, 19(6):671~702.
    57 Z. Apalak, M. Apalak, M. Genc. Progressive Damage Modeling of an Adhe-sively Bonded Composite Single Lap Joint under Flexural Loads at the MesoscaleLevel[J]. Journal of Reinforced Plastics and Composites, 2007, 26(9):903~653.
    58 D. Blackketter, D. Walrath, A. Hansen. Modeling Damage in a Plain Weave FabricReinforced Composite Material[J]. Journal of Composites Technology and Re-search, 1993, 15(2):136~142.
    59 P. Camanho, F. Matthews. A Progressive Damage Model for Mechanically Fas-tened Joints in Composite Laminates[J]. Journal of Composite Materials, 1999,33(24):2248~2280.
    60 M. Zakoa, Y. Uetsujib, T. Kurashikia. Finite Element Analysis of Damaged Wo-ven Fabric Composite Materials[J]. Composites Science and Technology, 2003,63:507~516.
    61庞宝君,杜善义,韩杰才,等.三维多向编织复合材料非线性本构行为的细观数值模拟[J].复合材料学报,2000,17(1):98~102.
    62 T. Zeng, D. Fang, L. Ma, et al. Predicting the Nonlinear Response and Failure of 3D Braided Composites[J]. Materials Letters, 2004, 58:3237~3241.
    63徐焜,许希武.三维编织复合材料渐进损伤的非线性数值分析[J].力学学报,2007, 39(3):398~407.
    64 R. Talreja. Further Developments in Continuum Damage Modelling of CompositesAided by Micromechanics[C]//American Society of Mechanical Engineers, Ap-plied Mechanics Division. Anaheim, CA, USA, 1992, 150:103~106.
    65 P. Ladeve`ze, D. E. Le. Damage Modelling of the Elementary Ply for LaminatedComposites[J]. Composites Science and Technology, 1992, 43(3):257~267.
    66 D. Lo, D. Allen, C. Harris. Progressive Failure Analysis of Carbon Fiber/EpoxyComposite Laminates Using Continuum Damage Mechanics[C]//ASTM SpecialTechnical Publication. USA, 1993:680~695.
    67 A. Matzenmiller, J. Lubliner, R. Taylor. Constitutive Model for Anisotropic Dam-age in Fiber-composites[J]. Mechanics of Materials, 1995, 20(2):125~125.
    68 O. Allix, P. Ladeve`ze. Interlaminar Interface Modelling for the Prediction of De-lamination[J]. Composite Structures, 1992, 22(4):235~242.
    69 C. Rospars, D. Le, F. Lecuyer. A Micromechanical Model for ThermostructuralComposites[J]. Composites Science and Technology, 2000, 60(7):1095~1102.
    70 P. Ladeve`ze, G. Lubineau. On a Damage Mesomodel for Laminates: Microme-chanics Basis and Improvement[J]. Mechanics of Materials, 2003, 35:763~775.
    71 J. Chaboche, S. Kruch, J. Maire, et al. Towards a Micromechanics Based Inelasticand Damage Modeling of Composites[J]. International Journal of Plasticity, 2001,17(4):411~439.
    72 J. Chaboche, J. Maire. A New Micromechanics Based CDM Model and its Appli-cation to CMC’s[J]. Aerospace Science and Technology, 2002, 6:131~145.
    73 G. Camus. Modelling of the Mechanical Behavior and Damage Processes of Fi-brous Ceramic Matrix Composites: Application to a 2-D SiC/SiC[J]. InternationalJournal of Solids and Structures, 2000, 37:919~942.
    74 D. Krajcinovic. Damage Mechanics[M]. Amsterdam: Elsevier, 1996.
    75 E. Barbero, P. Lonetti. An Inelastic Damage Model for Fiber Reinforced Lami-nates[J]. Journal of Composite Materials, 2002, 36(8):941~962.
    76 G. Z. Voyiadjis, R. J. Dorgan. Framework Using Functional Forms of HardeningInternal State Variables in Modeling Elasto-plastic-damage Behavior[J]. Interna-tional Journal of Plasticity, 2007, 23(10~11):1826~1859.
    77 G. Z. Voyiadjis, P. I. Kattan, Z. N. Taqieddin. Continuum Approach to DamageMechanics of Composite Materials with Fabric Tensors[J]. International Journal ofDamage Mechanics, 2007, 16(3):301~329.
    78 O. Siron, J. Pailhes, J. Lamon. Modelling of the Stress/Strain Behaviour of a Car-bon/Carbon Composite with a 2.5 Dimensional Fibre Architecture under Tensileand Shear Loads at Room Temperature[J]. Composites Science and Technology,1999, 59(1):1~12.
    79 J. Pailhes, G. Camus, J. Lamon. A Constitutive Model for the Mechanical Behaviorof a 3D C/C Composite[J]. Mechanics of Materials, 2002, 34(3):161~177.
    80 X. Aubard, C. Cluzel, L. Guitard, et al. Damage Modelling at the MesoscopicScale for 4D Carbon/Carbon Composites[J]. Key Engineering Materials, 1999,164~165:159~162.
    81 X. Aubard, C. Cluzel, L. Guitard, et al. Damage Modeling at Two Scales for 4DCarbon/Carbon Composites[J]. Computers and Structures, 2000, 20(1):83~91.
    82 P. Camanho, C. Da′vila. Mixed-mode Decohesion Finite Elements for the Simu-lation of Delamination in Composite Materials[R]. Tech. rep., NASA/TM-2002-211737, 2002.
    83 P. Maim′?, P. Camanho, J. Mayugo, et al. A Continuum Damage Model for Com-posite Laminates: Part I - Constitutive Model[J]. Mechanics of Materials, 2007,39(10):897~908.
    84 P. Maim′?, P. Camanho, J. Mayugo, et al. A Continuum Damage Model for Com-posite Laminates: Part II - Computational Implementation and Validation[J]. Me-chanics of Materials, 2007, 39(10):909~919.
    85 Z. Bazˇant, B. Oh. Crack Band Theory for Fracture of Concrete[J]. Materials andstructures, 1983, 16:155–177.
    86 G. Barenblatt. The Mathematical Theory of Equilibrium Cracks in Brittle Frac-ture[J]. Advances in Applied Mechanics, 1962, 7:55~129.
    87 D. Dugdale. Yielding of Steel Sheets Containing Slits[J]. Journal of the Mechanicsand Physics of Solids, 1960, 8:100~108.
    88 A. Hillerborg, M. Modeer, P. Petersson. Analysis of Crack Formation and CrackGrowth in Concrete by Means of Fracture Mechanics and Finite Elements[J]. Ce-ment and Concrete Research, 1976, 6:773~782.
    89 A. Needleman. A Continuum Model for Void Nucleation by Inclusion Debond-ing[J]. Journal of Applied Mechanics, 1987, 54:525~531.
    90 S. Nutt, A. Needleman. Void Nucleation at Fiber Ends in Al-SiC Composites[J].Scripta Metall, 1987, 21:705~710.
    91 A. Needleman. An Analysis of Tensile Decohesion Along an Interface[J]. Journalof the Mechanics and Physics of Solids, 1990, 38:289~324.
    92 V. Tvergaard. Effect of Fiber Debonding in a Whisker-reinforce Metal[J]. MaterialsScience and Engineering A, 1990, 125:203~213.
    93 V. Tvergaard. Effect of Ductile Particle Debonding During Crack Bridging in Ce-ramics[J]. International Journal of Mechanical Sciences, 1992, 34:635~649.
    94 V. Tvergaard. Fiber Debonding and Breakage in a Whisker-reinforced Metal[J].Materials Science and Engineering A, 1995, 190:215~222.
    95 K. Volokh. Comparison between Cohesive Zone Models[J]. Communications inNumerical Methods in Engineering, 2004, 20:845~856.
    96 G. Alfano, E. Sacco. Combining Interface Damage and Friction in a CohesiveZone Model[J]. International Journal for Numerical Methods in Engineering, 2006,68:542~582.
    97 W. G. Jiang, S. R. Hallett, B. G. Green, et al. A Concise Interface Constitutive Lawfor Analysis of Delamination and Splitting in Composite Materials and its Applica-tion to Scaled Notched Tensile Specimens[J]. International Journal for NumericalMethods in Engineering, 2007, 69:1982~1995.
    98 D. Allen, R. Jones, J. Boyd. Micromechanical Analysis of a Continuous Fiber MetalMatrix Composite Including the Effects of Matrix Viscoplasticity and EvolvingDamage[J]. Journal of the Mechanics and Physics of Solids, 1994, 42:502~529.
    99 E. Totry, C. Gonza′lez, J. LLorca. Failure Locus of Fiber-reinforced Compositesunder Transverse Compression and Out-of-plane Shear[J]. Composites Scienceand Technology, 2008, 68(3~4):829~839.
    100 E. Totry, C. Gonza′lez, J. LLorca. In?uence of the Loading Path on the Strength ofFiber-reinforced Composites Subjected to Transverse Compression and Shear[J].International Journal of Solids and Structures, 2008, 45(6):1663~1675.
    101 C. Gonza′lez, J. LLorca. Mechanical Behavior of Unidirectional Fiber-reinforcedPolymers under Transverse Compression: Microscopic Mechanisms and Model-ing[J]. Composites Science and Technology, 2007, 67(13):2795~2806.
    102 G. Wells, L. Sluys. A New Method for Modelling Cohesive Cracks Using FiniteElements[J]. International Journal for Numerical Methods in Engineering, 2001,50(12):2667~2682.
    103 N. Moes, T. Belytschko. Extended Finite Element Method for Cohesive CrackGrowth[J]. Engineering Fracture Mechanics, 2002, 69(7):813~833.
    104 G. Zi, T. Belytschko. New Crack-tip Elements for XFEM and Applications toCohesive Cracks[J]. International Journal for Numerical Methods in Engineering,2003, 57:2221~2240.
    105 J. Asferg, P. Poulsen, L. Nielsen. A Consistent Partly Cracked XFEM Elementfor Cohesive Crack Growth[J]. International Journal for Numerical Methods inEngineering, 2007, 72:464~485.
    106 C. Comiz, S. Mariani, U. Perego. An Extended FE Strategy for Transition fromContinuum Damage to Mode I Cohesive Crack Propagation[J]. International Jour-nal for Numerical and Analytical Methods in Geomechanics, 2007, 31:213~238.
    107 S. Ghosh, Y. Ling, B. Majumdar, et al. Interfacial Debonding Analysis in MultipleFiber Reinforced Composites[J]. Mechanics of Materials, 2000, 32:561~591.
    108 S. Li, S. Ghosh. Modeling Interfacial Debonding and Matrix Cracking in FiberReinforced Composites by the Extended Voronoi Cell FEM[J]. Finite Element inAnalysis and Design, 2007, 43:397~410.
    109 J. E. Masters, M. A. Portanova. Standard Test Methods for Textile Composites[R].Tech. rep., NASA CR 4751, 1996.
    110 B. Cox. Failure Models for Textile Composites[R]. Tech. rep., NASA CR 4686,1995.
    111 S. P. Yushanov, A. E. Bogdanovich. Stochastic Theory of Composite Materialswith Random Waviness of the Reinforcements[J]. International Journal of Solidsand Structures, 1998, 35(22):2901~2930.
    112 S. Yushanov, A. Bogdanovich. Fiber Waviness in Textile Composites and itsStochastic Modeling[J]. Mechanics of Composite Materials, 2000, 36(4):297~318.
    113 R. Chudoba, M. Vorechovsky, M. Konrad. Stochastic Modeling of Multi-filamentYarns. I. Random Properties Within the Cross-section and Size Effect[J]. Interna-tional Journal of Solids and Structures, 2006, 43:413~434.
    114 M. Vorechovsky, R. Chudoba. Stochastic Modeling of Multi-filament Yarns: II.Random Properties Over the Length and Size Effect[J]. International Journal ofSolids and Structures, 2006, 43:435~458.
    115 M. Sˇejnoha, J. Zeman. Micromechanical Modeling of Imperfect Textile Compos-ites[J]. International Journal of Engineering Science, 2008, 46:513~526.
    116 B. Gommers, I. Verpoest, H. Van. Modeling the Elastic Properties of Knit-ted Fabric-reinforced Composites[J]. Composites Science Technology, 1996,56:685~694.
    117 Z. Xia, C. Zhou, Q. Yong, et al. On Selection of Repeated Unit Cell Modeland Application of Unified Periodic Boundary Conditions in Micro-mechanicalAnalysis of Composites[J]. International Journal of Solids and Structures, 2006,43:266~278.
    118 Z. Hashin. Failure Criteria for Unidirectional Fiber Composite[J]. Journal of Ap-plied Mechanics, 1980, 47:329~334.
    119 I. Lapczyk, J. Hurta. Progressive Damage Modeling in Fiber-reinforced Materi-als[J]. Composites Part A, 2007, 38:2333~2341.
    120 G. Duvaut, J. Lions. Inequalities in Mechanics and Physics[M]. Berlin:: Springer,1976.
    121 Abaqus 6.5 User’s Manual, Abaqus Inc.[M]. Pawtucket, RI, .USA, 2005.
    122 D. Krajcinovic, M. Silva. Statistical Aspects of the Continuous Damage Theory[J].International Journal of Solids and Structures, 1982, 18(7):551~562.
    123 S. Phoenix. Statistical Theory for the Strength of Twisted Fiber Bundles with Ap-plications to Yarns and Cables[J]. Textile Research Journal, 1979:407~423.
    124 R. Chudoba, M. Vorechovsky, M. Konrad. Stochastic Modeling of Multi-filamentYarns. II. Random Properties Over the Length and Size Effect[J]. InternationalJournal of Solids and Structures, 2006, 43:435~458.
    125曾庆敦,马锐,范赋群.复合材料正交叠层板最终拉伸强度的细观统计分析[J].力学学报,1994,26(4):451~461.
    126 I. Beyerlein, S. Phoenix. Comparison of Shear-lag Theory and Continuum Frac-ture Mechanics for Modeling Fiber and Matrix Stresses in an Elastic CrackedComposite Lamina[J]. International Journal of Solids and Structures, 1996,33(18):2543~2574.
    127 M. Ibnabdeljalil, W. Curtin. Strength and Reliability of Fiber-reinforced Compos-ites: Localized Load Sharing and Associated Size-effects[J]. International Journalof Solids and Structures, 1997, 34(21):2649~2668.
    128 F. Kun, S. Zapperi, H. Herrmann. Damage in Fiber Bundles Models[J]. The Euro-pean Physical Journal B, 2000, 17:269~279.
    129 Y. Zhu, B. Zhou, G. He, et al. A Statistical Theory of Composite MaterialsStrength[J]. Journal of Composite Materials, 1989, 23:280~287.
    130 B. Rosen. Tensile Failure of Fibrous Composites[J]. AIAA Journal, 1964, 2:1985.
    131王业兴,唐羽章.复合材料力学分析设计[M].长沙:国防科技大学出版社,1999.
    132 H. Daniels. The Statistical Theory of the Strength of Bundles of Threads.I[C]//Mathematical and Physical Sciences. London, 1945, 183:405~435.
    133 J. Hearle, P. Grosberg, S. Backer. Structural Mechanics of Fibers, Yarns and Fab-rics[M]. NewYork: Wiley, 1969.
    134 B. Budiansky, N. Fleck. Compressive Failure of Fiber Composites[J]. Journal ofthe Mechanics and Physics of Solids, 1993, 41:183~211.
    135 A. Waas, C. Schultheisz. Compressive Failure of Composites, Part II: ExperimentalStudies[J]. Progress in Aerospace Sciences, 1996, 32(1):43~78.
    136 C. Schu¨ltheisz, A. Waas. Compressive Failure of Composites, Part I: Testing andMicromechanical Theories[J]. Progress in Aerospace Sciences, 1996, 32(1):1~42.
    137 B. Cox, M. Dadkhah, W. Morris, et al. Failure Mechanism of 3d Woven Compositesin Tension, Compression, and Bending[J]. Acta Metallurgica et Materialia, 1994,42(12):3967~3984.
    138 W. Kuo, T. Ko. Compressive Damage in 3-axis Orthogonal Fabric Composites[J].Composites Part A: Applied Science and Manufacturing, 2000, 31(10):1091~1105.
    139 S. Kim, S. Chang. The Relation between Compressive Strength of Carbon/epoxyFabrics and Micro-tow Geometry with Various Bias Angles[J]. Composite Struc-tures, 2006, 75(1-4):400~407.
    140 S. Quek, A. Waas, K. Shahwan, et al. Compressive Response and Failure of BraidedTextile Composites: Part 1 - Experiments[J]. International Journal of Non-LinearMechanics, 2004, 39(4):635~648.
    141 S. Quek, A. Waas, K. Shahwan, et al. Compressive Response and Failure of BraidedTextile Composites: Part 2 - Computations[J]. International Journal of Non-LinearMechanics, 2004, 39(4):649~663.
    142 A. Salvi, A. Waas, A. Caliskan. Rate Dependent Compressive Response of 2d Tri-axially Braided Carbon Fiber Composites and the Effects of Resin on the InterfacialShear Strength[J]. Composites Part A: Applied Science and Manufacturing, 2009,40(1):19~27.
    143 S. Song, A. Waas, K. Shahwan, et al. Braided Textile Composites under Com-pressive Loads: Modeling the Response, Strength and Degradation[J]. CompositesScience and Technology, 2007, 67(15-16):3059~3070.
    144 H. Hahn, S. Tsai. Nonlinear Elastic Behavior of Unidirectional Composite Lami-nate[J]. Journal of Composite Materials, 1973, 7:102~118.
    145 A. Argon. Fracture of Composites In: Treatise on Materials Science and Technol-ogy[M]. New York: Academic Press, 1972.
    146 S. Pinho, L. Iannucci, P. Robinson. Physically-based Failure Models and Criteriafor Laminated Fibre-reinforced Composites with Emphasis on Fibre Kinking: PartI: Development[J]. Composites Part A: Applied Science and Manufacturing, 2006,37(1):63~73.
    147 S. Pinho, L. Iannucci, P. Robinson. Physically Based Failure Models and Criteriafor Laminated Fibre-reinforced Composites with Emphasis on Fibre Kinking. PartII: Fe Implementation[J]. Composites Part A: Applied Science and Manufacturing,2006, 37(5):766~777.
    148 A. Puck, H. Schu¨rmann. Failure Analysis of FRP Laminates by Means of PhysicallyBased Phenomenological Models[J]. Composites Science and Technology, 1998,58:1045~67.
    149 J. Wiegand, N. Petrinic, B. Elliott. An Algorithm for Determination of the FractureAngle for the Three-dimensional Puck Matrix Failure Criterion for UD Compos-ites[J]. Composites Science and Technology, 2008, 68:2511~2517.
    150 S. Tsai, E. Wu. A General Theory of Strength for Anisotropic Materials[J]. Journalof Composite Materials, 1971, 5:58~80.
    151 S. Tsai. Strength Theories of Filamentary Structures in Fundamental as As-pects of Fiber Reinforced Plastic Composites[M]. New York: Wiley Intersciene,1968:3~11.
    152王兴业.复合材料张量多项式强度准则的实验研究[J].复合材料学报, 1986,3(2):54~63.
    153 R. Cuntze, A. Freund. The Predictive Capability of Failure Mode Concept-basedStrength Criteria for Multidirectional Laminates[J]. Composites Science and Tech-nology, 2004, 64:343~377.
    154刘方龙.统一型三次强度准则及其耦合系数的确定[J].航空学报, 1987,8(9):489~495.