多用户OFDM系统的自适应子载波和比特分配算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交频分复用系统(OFDM)把实际信道划分为若干个子信道,其中一个重要优点就是能够根据各个子信道的实际传输情况灵活地分配发送功率和信息比特。由于无线信道的频率选择性和时变性,也需要实时地对信道状况进行监测,以便更加有效地利用无线频率资源。目前,对于多用户OFDM系统中的子载波和比特分配问题有许多研究方法,这些方法大体上可以分为两类问题:静态分配方法和动态分配方法。静态分配方法有两种典型的分配策略:OFDM-TDMA和OFDM-FDMA,对于这些静态分配算法,子载波和比特的分配是预先设定的,没有充分地利用瞬时信道增益信息。
    本文主要分析动态分配算法,从给定总数据速率条件下的总体发射功率最小化问题和给定总发射功率限制条件下的数据速率最大化问题两个角度研究了OFDM系统的资源分配问题。借鉴了经典单用户分配算法和二分法等思想对问题进行分析处理,并用MATLAB语言实现了整个算法的仿真。仿真结果表明,两类算法的性能都逼近最优算法,且明显优于静态分配算法,比已有的动态算法的性能也有一定幅度的提升,在提高了信噪比的同时,保证了一定的计算复杂度要求。
1. Introduction
    Orthogonal Frequency Division Multiplexing (OFDM) is a widely used multi-carriermodulation scheme which divides the multipath fading channel into a number of parallelfrequency dependent flat fading channels. It has been suggested that multiuser OFDMsystems employ adaptive subcarrier allocation as well as adaptive bit loading. Byadaptively assigning subcarriers depending on channel characteristics, multiuser OFDMcan take advantage of channel diversity among users in different locations.
    In multirser environment, the so-called ‘multiuser diversity' by dynamically allocatingsubcarriers among the users can be used. Since the subcarriers that appear to be in deepfade for one user may not be in deep fades for others, spectral efficiency can be improved,and equivalently, transmit power can be reduced.
    Two classes of resource allocation schemes exist: fixed resource allocation anddynamic resource allocation. Fixed resource allocation schemes, such as time divisionmultiple access (TDMA) and frequency division multiple access (FDMA), assign anindependent dimension, e.g. time slot or subchannel, to each user. A fixed resourceallocation scheme is rigid regardless of the current channel condition. On the other hand,dynamic resource allocation allocates a dimension adaptively to the users based on theirchannel gains. Due to the time-varying nature of the wireless channel, dynamic resourceallocation makes full use of the multiuser diversity to achieve higher performance. Twoclasses of optimization techniques have been proposed in the dynamic multiuser OFDMliteratures: margin adaptive (MA) and rate adaptive (RA). The objective of MA is toachieve the minimum overall transmit power under the constraints on the users' data rate orbit error rate. While the objective of RA is to maximize each user's error-free capacity witha total transmit power constraint.
    2. Margin Adaptive
    A dynamic multiuser subcarrier and bit allocation algorithm with low computationalcomplexity for wideband OFDM downlink transmission is proposed to exploit themultiuser diversity in this paper.
    The problem of margin adaptive has been discussed first. We propose a new algorithmthat defines and solves the problem as a circular of two allocation tasks, which can reducethe complexity of calculation effectively. Dynamic channel allocation for subcarrier isconducted, after the initial allocation of subcarrier completed, further allocation to reducetotal power is made. Then the associated subcarrier swapping is done between users if the
    power reduction is maximum between the users. Or a subcarrier from one user to anotheris relocated and the related bit loading is adjusted as described before. After the subcarrierswapping or the relocation operation is completed, updating of all the power reductionfactors is necessary, and continues this process until all the power reduction factors arenegative. This means will reduce the total transmit power further by either two subcarrierswapping or one subcarrier relocation. In order to reduce the complexity, the iterationtimes of the algorithm can be controlled to make a satisfied condition. Once the subcarriershave been allocated, the single user allocation methods, for example greedy method, canbe used to solve the problem. Then after a fixed interval, the subcarriers can relocated byusing dynamic channel allocation algorithm with greedy method too. This proposedalgorithm can greatly reduce computational cost that is the most critical obstaclepreventing the applications of the allocation algorithms. At the same time, a goodperformance is guaranteed. Furthermore, the algorithm can be used in a variousenvironments by changing the time interval between two subcarrier allocations.3. Rate AdaptiveIn the paper, a subcarrier adaptation method that maximizes the total data rate ofmultiuser orthogonal frequency division multiplexing systems in a down link transmissionis developed. The data rate maximization problem that multiusers could share a subcarrieris formulated. The assumption, that says only one user can use a special subcarrier, isproved mathematically. Precisely, the subcarrier assignment strategy for multiusers tomaximize the data rate of a specific subcarrier in a downlink multiuser OFDM system isthat the subcarrier should be assigned to only one user who has the best channel gain forthat subcarrier. Base on this, the model could be simplified and the dynamic channelallocation methods to solve the subcarrier allocation problem can be adopted. Sincemaximum modulation level supported by each subcarrier is limited, the maximum systemthroughput can be obtained by searching all possible bit rate and taking the maximum onein satisfaction of the power constraint. In other words, the optimal problem can beequivalently decoupled as a fast searching problem.4. Simulation and ConclusionThe simulations of the improved resource allocation algorithm on computer withMATLAB are performed. The simulation results indicate that the proposed adaptivedynamic subcarrier and bit allocation algorithm offers about 4-5dB performance gain overOFDM system using modulation with fixed subcarrier allocation.
引文
[1] 王文博,郑侃,《宽带无线通信OFDM技术》,人民邮电出版社,北京,2003.
    [2] 佟学俭,罗涛,《OFDM移动通信技术原理与应用》,人民邮电出版社,北京,2003.
    [3] C.Y. Wong, R. S. Cheng, K. B. Lataief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation, ” IEEE J. Selected Areas on Communications , October 1999, vol.17, pp.1747-1758.
    [4] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, NY 1991.
    [5] A. Czlwik, “Adaptive OFDM for wideband radio channels, ” in Proc. IEEE Global Telecommunications Conf. (GLOBECOM'96), London, U. K. Nov. 1996, pp.713-718.
    [6] W. T. Webb and R. Steele, “Variable rate QAM for mobile radio, ” IEEE Transaction on Communications, July 1995, vol.43, pp.2223-2230.
    [7] H. Rohling and R. Grunheid, “Performance comparison of different multiple access schemes for the downlink of OFDM communication system, ” in Proc. IEE VTC'1997, Phoenix, AZ.
    [8] R. Prasad, OFDM Wireless Multimedia Communications, Artech House 2000.
    [9] Guo dong Zhang, “Subcarrier and bit allocation for real-time services in multiuser OFDM systems, ” IEEE Communications Society, 2004, pp.2985-2989.
    [10] Zukang Shen, Jeffery G. Andrews and Brian L. Evans, “Optimal power allocation in multiuser OFDM systems, ” IEEE GLOBECOM 2003, pp.337-341.
    [11] C. S. Park and K. B. Lee, “Transmit power allocation for BER performance improvement in multicarrier systems, ” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2002 (PIMRC 2002), Sept, 2002, vol.5, pp.2049-2053.
    [12] Chow. P. S, Cioffi. J. M, Bingham. J. A. C, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels, ”, IEEE Transactions on Communications, 1995, 43 (2): pp.773-775.
    [13] Robert F. H. Fisher, Johanes B. Huber, “A new loading algorithm for discrete multitone transmission, ”in Proc. IEEE Globecom 1996, London,Nov 1996, pp.724-728.
    [14] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation, ” IEEE J. Selected Areas on Communications, Oct.1999, vol.17, pp.1747-1758.
    [15] Y. F. Chen, J. W. Chen, and C. P. Li, “A fast suboptimal subcarrier, bit, and power allocation algorithm for multiuser OFDM-based systems, ” IEEE Communications Society, 2004, pp.3212-3216.
    [16] C. Y. Wong, C. Y. Tsui, R. S. Cheng, and K. B. Letaief, “A real-time sub-carrier allocation scheme for multiple access downlink OFDM transmission,” IEEE VTC'99, pp.1124-1128.
    [17] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems, ” IEEE JSAC, Feb. 2003, vol.21, pp.171-178.
    [18] J. Dulj, “Efficient power allocation algorithm for OFDM systems,” IEEE MELECON, May. 2004, Dubrovnik, Croatia, pp.425-428.
    [19] B. Canpolat and Y. Tanik, “Performance of adaptively loaded OFDM under rayleigh fading with diversity combining,” IEEE Proc. VTC'2001, Oct., 2001, col.2, pp.957-961.
    [20] S. H. Song, C. P. Hou, D. Cao, “Bit allocation algorithm for multi-user adaptive OFDM system with adaptive trellis coded MQAM,” IEEE Proceedings, Canadian Conference on Electrical and Computer Engineering, 2002, pp.1300-1304.
    [21] A. Papoulis, Probability, Random variables and stochastic processes, New York: McGraw-Hill, 1991.
    [22] A. J. Goldsmith and S. G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun., Oct. 1997, vol.45, pp.1218-1230.
    [23] C. L. Ng, K. B. Letaief and R. D. Murch, “Antenna diversity combining and finite-tap decision feedback equalization for hign-speed data transmission, ” IEEE Selected Areas on Communications Oct.1998, vol.16, pp.1367-1375.
    [24] L. J. Cimini, Jr. and N. R. Sollenberger, “OFDM with diversity and coding for high-bit-rate mobile data applications, ” Mobile Multimedia Commun., 1997, vol.1, pp.247-254.
    [25] H. Rohling and R. Grunheid, “Performance of an OFDM-TDMA mobile communication system, ”in Proc. IEEE Vehicular Technology Conf.(VTC'96),Atlanta,GA,pp.1589-1593.
    [26] Jorge Campello, Discrete Bit Loading for Multicarrier Modulation Systems, Ph. D dissertation, Stanford, 1999.
    [27] H. Rohling and R. Grunheid, “Performance comparison of different multiple access schemes for the downlink of an OFDM communication system, ” in Proc. IEEE Vehicular Technology Conf. (VTC'97), Phoenix, AZ, pp.1365-1369.
    [28] T. Keller and L. Hanzo, “Adaptive multicarrier modulation:a convenient framework for time frequency processing in wireless communications, ” IEEE Proc., May 2000, Vol. 88, pp.611-640.
    [29] S. G. Chua and A. Goldmith, “Adaptive coded modulation for fading channels, ”in Proc. IEEE Int. Conf. Communications (ICC'97), Montreal, P.Q., Canada, pp.1488-1492.
    [30] B. S. Krongold, K. Ramchandran and D. L.Jones, “Computationally efficient optimal power allocation algorithm for multicarrier communication systems, ” in Proc. IEEE Int. Conf. Communications (ICC'98), Atlanta, GA, pp.1018-1022.
    [31] Q. Chen, E. S. Sousa, and S.Pasupathy, “Multicarrier CDMA with adaptive frequency hopping for mobile radio systems, ” IEEE J. Selected Areas on Communications, Dec.1996, vol.14, pp.1852-1858.
    [32] J. G. Proakis, Digital Communication,3rd ed. New York: McgrawHill,1995.
    [33] R. S. Cheng and S. Verdu, “Gaussian multi-access channels with ISI : Capacity regions and multiuser water-filling, ” IEEE Transaction on Information Theory, May 1993, vol.39, pp.773-785.
    [34] H. Rohling and R. Gruheid, “Performance comparison of different multiple access schemes for the downlink of an OFDM communication system,” in Proc. IEEE Vehicular Technology Conf. (VTC'97), Phoenix, AZ, pp.1365-1369.
    [35] W. T. Webb and R. Steele, “Variable rate QAM for mobile radio, ” IEEE Transaction on Communications, July 1993, Vol.43, pp.2223-2230.
    [36] S. K. Lai, R. S. Cheng, K. Ben Letaief, and R. D. Murch, “Adaptive trellis coded MQAM and power optimization for OFDM transmission, ” in Proc. IEEE Vehicular Technology Conf.(VTC'99), Houston, TX, May 1999.
    [37] H. J. Yin and H. Liu, “An efficient multiuser loading algorithm for OFDM-based broadband wireless systems,”GLOBECOM'00,Vol.1, pp.103-107,2000.
    [38] T. S. Rappaport, Wireless Communications Principles and Practice. Englewood Cliffs, NJ: Pren-tice-Hall, 1996.
    [39] H. Sampath, S. Talwar, J. Tellado, V.Erceg, and A. Paulraj, “A fourth-generation MIMO-OFDM broadband wireless system: Design, Performance, and Field Trial Results, ” IEEE Communications Magazine, Sep.2002, vol.40, no.9, pp.143-149.
    [40] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic subchannel allocation,” Proc.VTC'00, 2000, Vol.2, pp.1085-1089.
    [41] J. A. C. Bingham, “Multicarrier Modulation for data transmission:an idea whose time has cone, ” IEEE Communications Magazine, May 1990, vol.28,no.5pp.5-14.
    [42] E. Lawrey, “Multiuser OFDM, ” Proc. IEEE International Symposium on Signal Processing and its Applications, Aug.1999, vol.2, pp.761-764.
    [43] C. Y. Wong, C. Y. Tsui, R. S. Cheng, and K. B. Letaief, “A real-time sub-carrier allocation scheme for multiple access downlink OFDM transmission,” Proc. VTC'99, 1999, vol.2, pp.1124-1128.
    [44] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems, ”IEEE Journal on Selected Areas in Communications, Feb.2003, vol.21,no.2,pp.171-178.
    [45] I. Kim, H. L. Lee, B. Kim, and Y. H. Lee, “On the use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM,” in Proc. IEEE Global Communications Conference, Noc.2001, vol.6, pp.3648-3652.
    [46] N. Jindal and A. Goldsmith, “Capacity and optimal power allocation for fading broadcast channels with minimum rates,” in Proc, IEEE Global Communications Conference, Nov.2001, vol. 2, pp.1292-1296.
    [47] M. C. Hool, J. Tellado, and J. M. Cioffi, “Dual QoS loading algorithms for DMT systems offering CBR and VBR services, ”in Proc. IEEE Global Communications Conference, Nov. 1998, vol.2, pp.25-30.
    [48] T. S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall PTR, 2002.
    [49] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc.1991.
    [50] R. Knopp and P. A. Humblet, “Information capacity and power control in single-cell multiuser communications, ” in Proc. IEEE Int. Conf. Communications 1995, Seattke, WA, June 1995, pp.331-335.